On the numerical solution of chaotic dynamical systems using extend precision floating point arithmetic and very high order numerical methods
نویسندگان
چکیده
Multiple results in the literature exist that indicate that all computed solutions to chaotic dynamical systems are time-step dependent. That is, solutions with small but different time steps will decouple from each other after a certain (small) finite amount of simulation time. When using double precision floating point arithmetic time step independent solutions have been impossible to compute, no matter how accurate the numerical method. Taking the well-known Lorenz equations as an example, we examine the numerical solution of chaotic dynamical systems using very high order methods as well as extended precision floating point number systems. Time step independent solutions are obtained over a finite period of time. However even with a sixteenth order numerical method and with quad-double floating point numbers, there is a limit to this approach.
منابع مشابه
Dynamical Control of Computations Using the Family of Optimal Two-point Methods to Solve Nonlinear Equations
One of the considerable discussions for solving the nonlinear equations is to find the optimal iteration, and to use a proper termination criterion which is able to obtain a high accuracy for the numerical solution. In this paper, for a certain class of the family of optimal two-point methods, we propose a new scheme based on the stochastic arithmetic to find the optimal number of iterations in...
متن کاملCAMPARY: Cuda Multiple Precision Arithmetic Library and Applications
Many scientific computing applications demand massive numerical computations on parallel architectures such as Graphics Processing Units (GPUs). Usually, either floating-point single or double precision arithmetic is used. Higher precision is generally not available in hardware, and software extended precision libraries are much slower and rarely supported on GPUs. We develop CAMPARY: a multipl...
متن کاملA numerical approach for variable-order fractional unified chaotic systems with time-delay
This paper proposes a new computational scheme for approximating variable-order fractional integral operators by means of finite element scheme. This strategy is extended to approximate the solution of a class of variable-order fractional nonlinear systems with time-delay. Numerical simulations are analyzed in the perspective of the mean absolute error and experimental convergence order. To ill...
متن کاملStochastic Arithmetic in Multiprecision
Floating-point arithmetic precision is limited in length the IEEE single (respectively double) precision format is 32-bit (respectively 64-bit) long. Extended precision formats can be up to 128-bit long. However some problems require a longer floating-point format, because of round-off errors. Such problems are usually solved in arbitrary precision, but round-off errors still occur and must be ...
متن کاملSolving Second Kind Volterra-Fredholm Integral Equations by Using Triangular Functions (TF) and Dynamical Systems
The method of triangular functions (TF) could be a generalization form of the functions of block-pulse (Bp). The solution of second kind integral equations by using the concept of TF would lead to a nonlinear equations system. In this article, the obtained nonlinear system has been solved as a dynamical system. The solution of the obtained nonlinear system by the dynamical system throug...
متن کامل